Методы очистки воздуха от пыли. Чистим системный блок компьютера от пыли Методы очистки от пыли

  • 24.04.2024

Чистка компьютера от пыли – важная операции, которую должен проводить каждый пользователь компьютера. Многие пользователи ни разу ни проводили чистку компьютера, а некоторые даже никогда не открывали корпус компьютера и не представляют, в каком состоянии сейчас находится системный блок.

Зачем чистить компьютер от пыли

Пыль, которая накапливается внутри системного блока, вызывает перегрев различных компонентов системного блока. Из-за увеличения температуры компонентов системного блока компьютер начинает сильно шуметь, повышается износ компонентов и, в конце концов, это может привести к выходу из строя одного или нескольких компонентов системного блока.

Согласитесь, не самая лучшая перспектива. Но этого можно избежать, потратив 30 минут раз полгода, что бы произвести чистку компьютера от пыли.

Как очистить компьютер от пыли

Для очистки компьютера от пыли можно использовать один из двух основных принципов: выдувать пыль из системного блока или засасывать пыль, кроме того можно комбинировать два этих метода.

Выдувать пыль можно с помощью баллончика со сжатым воздухом, пылесоса (который может выдувать воздух), фена (но не горячим воздухом) и любым устройством, которое способно выделять струю воздуха под напором.

Засасывать пыль мы будем с помощью пылесоса. Кроме того Вам понадобится щётка или кисточка (которой мы будем убирать пыль из труднодоступных мест и засасывать ее пылесосом).

Подготовительный этап

Перед тем как приступить к чистке компьютера от пыли, нужно определиться с инструментами для чистки.

Для чистки компьютера нам понадобится:

  • Пылесос
  • Кисточка с длинным волосом
  • Зубная щетка
  • Баллончик со сжатым воздухом
  • Отвертка

Конечно, не все из этих инструментов понадобятся Вам при работе (например, если Вы собираетесь высасывать пыль пылесосом, то фен или баллончик со сжатым воздухом Вы можете не использовать). Я привел лишь основные инструменты, которые Вы можете использовать при чистке компьютера от пыли.

Меры предосторожности

Во время чистки системного блока от пыли соблюдайте следующие правила:

  • Обязательно отключите системный блок от розетки;
  • Не прикасайтесь к компонентам системного блока пылесосом. Платы можно трогать только кисточкой;
  • Не залезайте в системный блок и мокрыми или липкими руками;
  • Не пытайтесь сдуть пыль воздухом изо рта. Сдувая пыль таким образом, она попадет в глаза и дыхательные пути;
  • Если выдуваете пыль с помощью фена, то воздух должен быть холодный, но ни в коем случае не горячий.

Шаг 1. Открыть системный блок

Отключаем системный блок от всех периферийных устройств, сети, питания и т.д. Отключив все устройства, Мы можем перенести системный блок куда захотим. Для удобства работы я посоветую Вам поставить системный блок на стол или любую ровную поверхность, находящуюся Выше полу. Так будет удобнее работать, чем ползать по полу.

Теперь нужно снять боковую стенку(крышку) с системного блока. Нам нужно снять боковую стенку, которая находится с левой стороны системного блока, если смотреть на него спереди (там, где находится кнопка включения и привод). Если Вы собираетесь выдувать пыль, то лучше снять обе боковые стенки (будет больше отверстий, через которые можно выдуть пыль из системного блока).

Что бы снять крышку, нужно сначала открутить болты, которые крепят боковые стенки с задней стороны. На новых моделях корпуса системного блока боковые стенки могут крепиться не на болты сзади, а на специальные механизмы (защелки), которые могут располагаться на самих стенках.

Открыв крошку, осматриваем системный блок и оцениваем запыленность системного блока.

Шаг 2. Общая чистка

Когда мы окрыли корпус и оценили фронт работ нужно приступать к очистке. Нужно как можно тщательнее удалить пыль из корпуса и со всех устройств. Пройдитесь по всем местам: дно и бока корпуса, все платы, вентиляторы, не забудьте про блок питания и вентиляторы на корпусе.

Если Вы выдуваете пыль из корпуса, то нужно убрать системный блок из комнаты (например, балкон или вынести из квартиры в коридор). Когда Вы выдуваете пыль, она будет лететь во все стороны и оседать на вашей мебели и попадать в дыхательные пути. По – этому нужно делать это за пределами квартиры. Выдувайте пыль со всех углов и щелей, плат, устройств, вентиляторов.

Если Вы засасываете пыль, то снимите с пылесоса трубку и начинайте собирать пылесосом пыль со всех устройств, вентиляторов и углов. Возьмите кисточку с длинным волосом, что бы стряхивать пыль из труднодоступных мест или лопастей вентиляторов и засасывайте пыль пылесосом.

Продвинутые пользователи так же могут снять переднюю крышку корпуса и прочистить ее от пыли. Во многих системных блоках с передней стороны корпуса так же устанавливается вентилятор, которые со временем засоряется. Если Вы не уверены, что сможете снять и поставить обратно переднюю крышку, то лучше этого не делать.

Шаг 3. Чистка отдельных компотов

Теперь нужно отсоединить некоторые компоненты от материнской платы и корпуса. Нужно отсоединить видеокарту, модули оперативной памяти и прочие устройства (например, тв-тюнер, звуковая карта) которые подключены к материнской плате. Отсоединив устройства, мы сможем тщательнее очистить их от пыли, чем при общей очистке. Кроме самих устройств нужно убрать пыль из разъемов, куда они крепились.

Не обязательно доставать из корпуса привод и жесткие диски. В большинстве случаев пыль с них можно удалить, не вынимая их из корпуса (пылесос, кисточка). Но всё-таки оцените ситуацию, в некоторых корпусах, привод или жесткий диск могут устанавливается не очень удобно и очистить их от пыли крайне тяжело. В таком случае придется отсоединять их от корпуса для чистки.

Обратите внимание, что устройства нужно отсоединять только после общей очистки корпуса (шаг 2), иначе пыль может забиться в разъемы, куда устанавливаются отсоединенные Вами устройства (видеокарта, оперативная память и т.д.).

Шаг 4. Завершение чистки

Очистив все компоненты и устройства, устанавливаем их на место, закрываем корпус и проверяем работоспособность компьютера.

Заключение

Чистка компьютера от пыли помогает предотвратить выход из строя компонентов компьютера и снизить шум его работы. Проводите это операцию, не реже чем раз в полгода, а лучше периодически открывайте крышку своего системного блока и смотрите его состояние.

В процессах пылеулавливания существенное значение имеют размеры частиц пыли, их плотность, заряд, удельное сопротивление, адгезионные свойства, смачиваемость и т. п.

По размеру твердых частиц выделяют следующие виды пыли:

Более 10 мкм;

0,25–10 мкм;

0,01–0,25 мкм;

Менее 0,01 мкм.

Эффективность пылеулавливания мелких частиц меньше – 50–80%, крупных больше – 90–99,9%.

Различают два типа пылеуловителей: сухие и мокрые. Сухим путем пыль улавливают пылеосадительные камеры, циклоны, вихревые циклоны, электрофильтры и др. Для очистки от пыли мокрым способом применяют пенные аппараты, скрубберы Вентури и др.

Сухие пылеуловители, пылеосадительные камеры. Это наиболее простейшие аппараты, использующие для осаждения пыли поле гравитации, а при установке перегородок – инерционное поле. Эффективность улавливания пыли размером более 25 мкм – 50–80%. Для очистки горячих дымовых газов от пыли с размером более 20 мкм при температуре 450–600°С используются жалюзные пылеотделители. В них отделение пыли от основного потока газа происходит за счет инерционных сил, возникающих при резком повороте очищаемого газового потока, когда он проходит через жалюзи решетки. Эффективность очистки достигает 80%.

На рисунках 14 и 15 показаны схемы циклона (греч. kyklon – вращающийся) и скруббера (англ. scrub – cкрести) Вентури соответственно для сухого и мокрого способов пылеулавливания.

Циклоны – основной вид аппаратов для улавливания пыли, которые для ее осаждения используют центробежное поле. В циклон газовый поток вводится через патрубок – 1 по касательной к внутренней поверхности корпуса циклона – 2 (рис. 14). Поток совершает вращательно-поступательное движение вдоль корпуса к бункеру – 4. Частицы пыли под действием центробежной силы обра-зуют на стенке циклона пылевой слой, который осыпается и попадает в бункер. Газовый поток, освободившись от пыли, образует вихрь и через трубу – 3 покидает циклон. Бункер при его накоплении периодически разгружается от пыли.

Избыточное давление газов, поступающих в циклон, не должно превышать 2500 Па, температура – не выше 400°С. Допустимая входная концентрация слабо слипающейся пыли – около 1000 г/м 3 , среднеслипающейся – до 250 г/м 3 . Эффективность очистки газов от пыли более 5 мкм в цилиндрических циклонах 80–90%. Обычно их используют для предварительной очистки газов перед электрофильтрами и фильтрами. При очистке больших объемов газов применяют батареи, состоящие из необходимого числа параллельно установленных циклонов.

Ротационные пылеуловители – аппараты центробежного действия типа вентиляторов особой конструкции. Их используют для очистки газов от пыли с размером частиц более 5 мкм. Они обладают большой компактностью. Более перспективной модификацией являются противопроточные ротационные пылеотделители. Их размеры в 3–4 раза меньше, чем у циклонов, а энергозатраты меньше на 20–40%. Однако сложность конструкции и процесса эксплуатации затрудняет их широкое распространение.

Вихревые пылеуловители. Это тоже аппараты центробежного действия, которые в качестве завихрителя газовых потоков используют наклонные сопла или лопатки. Они способны очищать большие объемы газов от тонких фракций пыли, меньше 3–5 мкм. Эффективность очистки достигает 99%. Она мало зависит от содержания пыли в пределах до 300 г/м 3 .

Электрофильтры. Они представляют собой устройства с набором трубчатых осадительных, положительно заряженных электродов (анодов), внутри которых по их осевому центру распо-ложены тонкие стержни (струны) коронирующих, отрицательно заряженных электродов (катодов). Между этими электродами, представляющими цилиндрический электрический конденсатор, источником постоянного тока создается электрическое поле высокой на-пряженности, до 50–300 кВ/м. В этом сильном электрическом поле при столкновении заряженных частиц с молекулами происходит ударная ионизация газа. Однако до пробоя газа напряженность поля не повышают, т.е. создают условия для коронного разряда в газе. Аэрозольные частицы, поступающие в зону между катодом и анодом, адсорбируют образующие ионы, приобретают электрический заряд и движутся к электроду с противоположным зарядом. Так как площадь стержня (катода) значительно меньше площади трубки, плотность тока у катода будет значительно больше, чем у анода. Коронный разряд преимущественно локализуется у катода. Это приводит к значительно большему разряду катионов и образованию отрицательно заряженных аэрозольных частиц. Поэтому примеси в основном движутся к аноду и осаждаются на нем. Отсюда понятны названия: коронирующий и осадительный электроды.

При пропускании газа и примесей через электрофильтр скорость их потока обычно задают в пределах от 0,5 до 2 м/с. Скорость движения заряженных частиц к электродам зависит от их размера, заряда и напряженности электрического поля. При напряженности поля 150 кВ/м она составляет от 0,01 до 0,1 м/с для частиц с диаметром соответственно от 1 до 30 мкм. На электродах хорошо оса-ждаются и затем легко удаляются встряхиванием пыли с удельным сопротивлением от 104 до 1010 Ом·см. При меньших его значениях частицы пыли легко разряжаются на электроде, перезаряжаются и возвращаются обратно в газовый поток. Пыли с удельным сопротивлением более 1010 Ом·см медленно разряжаются на электродах, препятствуют осаждению новых частиц и улавливаются труднее всего. В этом случае используют увлажнение газа.

Электрофильтры используются для тонкой очистки газов от пыли и тумана. Сухие электрофильтры имеют производительность от 30 до 1000 м 3 /ч. Они способны очищать газы с эффективностью до 99,9% при содержании пыли до 60 г/м 3 и температуре газа до 250°С.

Фильтры. Их конструкции различны. Однако у всех фильтров основным элементом является пористая перегородка – фильтроэлемент. По виду материала перегородки различают: зернистые, гибкие, полужесткие, жесткие фильтры.

Зернистые фильтры из гравия, кокса, песка используют для очистки газов от крупных фракций пыли, создаваемых дробилками, грохотами, мельницами и др. Эффективность очистки – до 99,9%.

Гибкие пористые фильтроэлементы – это ткани, войлоки, губчатая резина, пенополиуретан. Ткани и войлоки чаще всего из-готавливают из синтетических волокон, стеклянных нитей, получая такие ткани, как нитрон, лавсан, хлорин, стеклоткань. Их широко используют для тонкой очистки газов с исходным содержанием пыли 20–50 г/м 3 . Эффективность очистки – 97–99%.

Жесткие фильтроэлементы изготавливают из пористой керамики и пористых металлов. Они незаменимы при очистке от примесей горячих и, агрессивных газов.

Полужесткие фильтры типа вязаных металлических сеток, прессованных спиралей и стружек из нержавеющей стали, латуни, никеля применяют для очистки горячих газов с температурой до 500°С от пыли с размером частиц более 15 мкм и начальной концентрацией до 50 г/м 3 .

Процесс фильтрования заключается в осаждении дисперсных частиц на поверхности пор фильтроэлемента. Осаждение происходит в результате эффекта касания, диффузионного, инерционного, гравитационного процесса, кулоновского взаимодействия заряженных частиц. Последнее характерно для нашедших в настоящее время широкое применение фильтров Петрянова из перхлорвиниловых волокон (ФПП). Такие ультратонкие волокна несут на своей поверхности заряды, что позволяет в начальной стадии фильтрования достигать очень высокой эффективности очистки газов от аэрозолей, до 99,99% при скорости фильтрации 0,01 м/с и диаметре частиц 0,34 мкм. Эти фильтры используют для очистки воздуха от радиоактивных аэрозолей. После нейтрализации заряда эффективность очистки снижается до 90%.

Если размер частиц больше размера пор, то наблюдается ситовой эффект с образованием слоя осадка. Этот эффект, а также постепенное закупоривание пор оседающими частицами увеличивают сопротивление фильтроэлемента и эффективность очистки, но снижает ее производительность. Поэтому фильтроэлементы периодически регенерируют.

Конструкции фильтров: рукавные, рулонные, рамочные.

Рукавные фильтры наиболее широко применяются для сухой очистки газовых выбросов. В цилиндрическом корпусе с конусным дном рукава из ткани или войлока крепятся к отверстиям нижней перегородки и к заглушкам верхней перегородки. Запыленный газ, подаваемый снизу через отверстия нижней перегородки, поступает в рукава, фильтруется и через межрукавное пространство и отвер-стия верхней перегородки выводится из аппарата. Регенерацию фильтра производят после его отключения от системы очистки путем встряхивания рукавов специальным устройством (пыль собирается в конусном дне) и обратной продувкой их сжатым газом. Допустимая концентрация пыли на входе в рукавный фильтр 20 г/м 3 , наибольшая температура газов – 130°С для рукавов из лавсана и 230°С – для стеклоткани, производительность – до 50 м 3 /ч, эф-фективность очистки – около 98%.

Мокрые пылеуловители. Аппараты мокрой очистки газов характеризуются высокой эффективностью тонкой очистки мелких пылей (0,3–1 мкм), а также возможностью очистки от пыли горячих и взрывоопасных газов. Они работают, используя осаждение частиц пыли на поверхности капель или пленки жидкости. При этом действуют силы инерции, броуновского движения, диффузии, происходит взаимодействие заряженных частиц, конденсация, испарение и т.п. Важным фактором является смачиваемость частиц жидкостью.

По конструкции мокрые пылеуловители разделяют на скрубберы Вентури, форсуночные и центробежные скрубберы, на аппараты ударно-инерционные, барботажно-пенные и др.

Скруббер Вентури (рис. 15). Основная часть этого скруббера – сопло Вентури – 1, в сужающуюся часть которого вводится запыленный газ, а через центробежные форсунки – 2 распыляется вода. При этом происходит разгон газа от входной скорости в 15–20 м/с до скорости 30–200 м/с в узком сечении сопла. Для эффективной очистки очень важна равномерность распределения капель воды по сечению сопла. В расширяющейся части сопла поток тормозится до скорости 15–20 м/с и подается в каплеуловитель – 3 – прямоточный циклон. Расход воды: 0,1–6 л/м 3 . Скрубберы Вентури обеспечивают высокую эффективность очистки (до 99,9%) от аэрозолей со средним размером частиц 1–2 мкм при их начальной концентрации до 100 г/м 3 . Производительность скрубберов Вентури – до 80 000 м 3 /ч.

Форсуночные и центробежные скрубберы эффективно улавливают частицы размером более 10–20 мкм. В них газовый по-ток направляется под углом на зеркало воды, выступающей над поверхностью шлама (рис. 16а). Крупные частицы оседают в воде, а мелкая пыль с газовым потоком поднимается вверх навстречу дождевому потоку, создаваемому форсунками – 2а или пленке воды, подаваемой через сопла в центробежном скруббере.

Удельный расход воды в форсуночных скрубберах составляет 3–6 л/м 3 , скорость движения потока газа – 0,7–1,5 м/с, эффективность очистки доменного газа – 60–70%. В центробежных скрубберах при запыленности газа пылью до 20 г/м 3 удельный расход воды составляет 0,09–0,18 л/м 3 , эффективность очистки при скорости газа 15–20 м/с – от 80 до 98%.

Барботажно-пенные пылеуловители (рис. 16б). В них газ на очистку поступает под горизонтальную решетку – 2б, затем проходит через отверстия в решетке и слой жидкости – 4 и пены – 5. При скорости газа до 1 м/с наблюдается барботажный режим очистки. При росте скорости до 2–2,5 м/с возникает пенный слой над жидкостью. Это приводит к повышению эффективности очистки, но также растет унос брызг из аппарата. Эффективность очистки газа от мелкой пыли достигает 95–96% при удельном расходе воды 0,4–0,5 л/м 3 .

Туманоуловители. Их используют для очистки воздуха от туманов кислот, щелочей, масел и других жидкостей. Туманы улавливают волокнистыми фильтрами, на поверхности пор кото-рых осаждаются капли и затем жидкость стекает под действием сил тяготения. В качестве материала применяется стекловолокно с диаметром волокон от 7 до 30 мкм или полимерные волокна (лав сан, полипропилен) диаметром от 12 до 40 мкм. В низкоскоростных туманоуловителях, со скоростью движения газа менее 0,15 м/с, преобладает механизм диффузионного осаждения капель, а в высокоскоростных (2–2,5 м/с) действуют инерционные силы.

Для низкоскоростного туманоуловителя используют трубчатые фильтрующие элементы. Их формируют (набирают) из волокнистых материалов в зазоре шириной 5–15 см между двумя сетчатыми цилиндрами, диаметры которых отличаются на 10–30 см. Эти элементы, в отличие от рукавных фильтров, с одного конца крепятся вертикально к отверстиям верхней перегородки цилинд-рического аппарата, а нижние концы через трубчатые гидрозатворы погружаются в стаканы с конденсированной жидкостью. Туман, проходя с наружной стороны цилиндра во внутреннюю полость, задерживает капли. Образующаяся из них жидкость стекает в стакан. Эффективность очистки частиц размером менее 3 мкм 99,9%.

Высокоскоростные туманоуловители имеют меньшие размеры и обеспечивают эффективность очистки в 90–98%. Для очистки воздуха ванн хромирования от тумана и брызг хромовой и серной кислоты с температурой до 90°С разработана конструкция фильтра с волокнами из полипропилена: ФВГ-Т. Его производительность 3 500–80 000 м 3 /ч, эффективность очистки – 96–99%.


Похожая информация.


Пыль и грязь по праву считаются врагами №1 для компьютерного железа. Их можно справедливо винить в снижении производительности системы, тормозах, внезапных перезагрузках, перегреве и выходе из строя комплектующих. Особенно проблема актуальна в летний период, когда толстый слой пыли и без того ухудшает теплопроводность систем охлаждения.

Многие люди боятся лазить внутрь системного блока, предпочитая игнорировать проблему до достижения критического момента. Результатом бездействия станет необходимость оплачивать дорогостоящий ремонт в сервисном центре или заменять один из компонентов системы. А ведь могли бы просто потратить десять минут свободного времени на чистку. Процедура довольно простая.

Отключите системный блок от электропитания и других подключенных к нему устройств. Снимите с него боковую крышку. Если хотите провести максимально эффективную чистку, стоит снять некоторые компоненты – жесткий диск, видеокарту и пр. Это облегчит доступ к отдаленным углам блока.

Возьмите отвертку и снимите располагающиеся внутри корпуса вентиляторы (кулеры). С процессором обычно проблем не возникает. Современные системы охлаждения оснащены механизмом крепления при помощи зажима, который «отщелкивается» руками вместе с радиатором.

Теперь, когда вы немного освободили пространство внутри корпуса, можно приступать к очистке поверхности от пыли. Делать это лучше всего при помощи плоской кисточки с длинным ворсом или специального баллона со сжатым воздухом, который обычно продается в любом компьютерном магазине. Использовать для этой цели пылесос строго запрещается – неосторожное с ним обращение может привести к повреждениям хрупких компонентов, кроме того, нередки ситуации, когда мелкие детали засасывает внутрь сильным потоком воздуха.

Влажной тряпкой можно пользоваться для чистки корпуса с внутренней и внешней стороны, очистки от пыли вентиляторов, но вот системные платы и прочую электронику лучше обходить стороной – она чувствительна к воде. Тряпкой также можно случайно погнуть или оторвать мелкую деталь.

Одним из наиболее труднодоступных мест в системном блоке стал блок питания. Разбирать его не рекомендуется даже опытному пользователю ПК, не говоря уже о новичках. Тут стоит ограничиться продуванием его снаружи с использованием баллона со сжатым воздухом.

В конце остается только установить все компоненты на их привычные позиции, тщательно их закрепив. Если использовалась влажная чистка, рекомендуется подождать 15-20 минут. Пусть все просохнет.

Описанную выше процедуру достаточно проводить раз в пару месяцев – этого будет достаточно, чтобы обеспечить беспроблемную работу комплектующих. Также следует хотя бы каждые полгода смазывать вентиляторы и менять термопасту на процессоре.

Отличного Вам дня!

Для очистки воздуха от пыли применяют пылеуловители и фильтры. К фильтрам относятся устройства, в которых отделение пылевых частиц от воздуха производится путем фильтрации через пористые материалы. Аппараты, основанные на иных принципах пылеотделения, принято называть пылеуловителями.

В зависимости от природы сил, действующих на взвешенные в газе пылевые частицы для их отделения от газового потока, используют следующие типы пылеулавливающих аппаратов:

сухие механические пылеуловители (взвешенные частицы отделяются от газа при помощи внешней механической силы);

мокрые пылеуловители (взвешенные частицы отделяются от газа путем промывки его жидкостью, захватывающей эти частицы);

электрические пылеуловители (частицы пыли отделяются от газового потока под действием электрических сил);

фильтры (пористые перегородки или слои материала, задерживающие пылевые частицы при пропускании через них запыленного воздуха);

комбинированные пылеуловители (используются одновременно различные принципы очистки).

По функциональному назначению пылеулавливающее оборудование подразделяют на два вида: 1) для очистки приточного воздуха в системах вентиляции и кондиционирования; 2) для очистки воздуха и газов, выбрасываемых в атмосферу системами промышленной вентиляции.

Основными технико-экономическими показателями, характеризующими промышленную эксплуатацию пылеуловителей и фильтров, являются:

производительность (или пропускная способность аппарата), определяемая объемом воздуха, который может быть очищен от пыли за единицу времени (м 3 /ч, м 3 /с);

аэродинамическое сопротивление аппарата прохождению через него очищаемого воздуха (Па). Оно определяется разностью полных давлений на входе в аппарат и выходе из него, т. е. р = р вх - р вых ;

общий коэффициент очистки или общая эффективность пылеулавливания, определяемая отношением массы пыли, уловленной аппаратом G ул , к массе пыли, поступившей в него с загрязненным воздухом GBX и выражаемый в относительных единицах или в %:

η = (G ул /G вх )100;

фракционный коэффициент очистки, т. е. эффективность пылеулавливания аппарата по отношению к различным по крупности фракциям (в долях единицы или в %)

η = [Ф вх – Ф вых (1 – η)] /Ф вх

где Ф вх, Ф вых - содержание фракции пыли в воздухе соответственно на входе и выходе из пылеуловителя, %.

Стоимость очистки воздуха (руб. на 1000 м 3 очищаемого воздуха).

Наиболее простыми по устройству и эксплуатации аппаратами являются пылеосадительные камеры, в которых отделение частиц пыли от воздуха происходит под действием силы тяжести при прохождении воздуха через камеры. Эти устройства применяют для грубой очистки, их эффективность пылеулавливния составляет 50...60 %. Скорость движения воздуха в камере выбирается из условия обеспечения ламинарного движения и обычно составляет 0,2... 0,8 м/с. Аэродинамическое сопротивление камер невысоко и равно 80...100 Па. С целью повышения эффективности пылеулавливания камер они иногда разделяются по высоте полками, которые могут периодически встряхиваться для очистки от оседающей пыли. Для этой же цели применяют пылеосадительные камеры лабиринтного типа.

Центробежные пылеотделители - циклоны - находят более широкое применение, так как при сравнительно простой конструкции обеспечивают высокую степень обеспыливания воздуха (80...90%). Наиболее известные типы отечественных циклонов приведены на рис. 7.1.

Циклон состоит из цилиндрического корпуса, к которому тангенциально подведен входной патрубок; нижней конической части и выхлопного патрубка, размещаемого внутри корпуса соосно с ним. Входя в циклон со скоростью 1&...20 м/с, запыленный воздух приобретает вращательное движение и опускается вниз. При этом частицы пыли под действием сил инерции отбрасываются к стенкам аппарата и, скользя по ним вниз, попадают в бункер. Очищенный поток воздуха поворачивает вверх и через выхлопную трубу выходит из циклона.

Эффективность пылеулавливания возрастает с увеличением скорости входа воздуха в циклон, однако при слишком большой скорости возрастает турбулизация воздушной среды и эффективность циклона падает. Максимальную скорость воздуха принимают обычно не более 20 м/с. На эффективность этих аппаратов влияет и их диаметр: с его увеличением эффективность падает, поэтому диаметр циклонов принимается не более 1 м.

Гидравлическое сопротивление циклонов колеблется в пределах 500... 1100 Па. Оно зависит от конструкции аппарата и скорости воздуха на входе в него.

Рис. 7.1. Схемы циклонов основных типов:

а - НИИОГАЗ ЦН-15; б - СИОТ; в - ВЦНИИОТ; г - Гипродрев;

1 - входной патрубок; 2-выхлопная труба; 3-цилиндрический корпус; 4-коническая часть; 5-бункер; 6-улитка на выходе; 7-отверстие выхлопного патрубка; 8-коническая вставка; 9-перегородки

Конструкции современных циклонов довольно разнообразны, что объясняется многообразием условий их рационального применения. Наибольшее распространение получили циклоны типа НИИОГАЗ (несколько модификаций), СИОТ, ВЦНИИОТ, ЛИОТ, Гипродрева (см. рис. 7.1). Они различаются конструктивным оформлением, эффективностью пылезадержания и гидравлическим сопротивлением. Каждый циклон имеет свою рациональную область применения.

Циклон НИИОГАЗ отличается удлиненной конической частью и имеет малое гидравлическое сопротивление. Применяется он для улавливания неслипающихся и неволокнистых пылей.

Циклон СИОТ имеет корпус в виде конуса без цилиндрической части с входной трубой треугольного поперечного сечения. Используется он в тех случаях, когда имеются ограничения габаритов по высоте.

Циклон ВЦНИИОТ рекомендуется применять при улавливании абразивных пылей, так как он отличается малой изнашиваемостью стенок благодаря наличию обратно расположенного конуса внизу аппарата. Гидравлическое сопротивление его несколько выше, чем у циклонов других типов. Циклон ВЦНИИОТ можно использовать для улавливания волокнистых пылей (нижний внутренний конус в этом случае снимается).

Циклон ЛИОТ имеет развитую цилиндрическую часть и применяется для улавливания сухой неслипающейся пыли.

Циклон Гипродрева отличается бочкообразной формой, имеет малое гидравлическое сопротивление и используется в основном для улавливания отходов деревообработки.

Окончательный выбор того или иного типа циклона должен определяться по технико-экономическим показателям. В тех случаях, когда требуется очищать большие объемы воздуха, применяют групповые циклоны. В них аппараты подсоединяются параллельно входными патрубками к общему трубопроводу и устанавливаются на один бункер больших размеров. Необходимым условием эффективной работы циклонов в этом случае является исключение возможности перетекания воздуха из одного циклона в другой.

Рукавные фильтры для улавливания сухих неслипающихся пылей нашли широкое применение в промышленности (рис. 7.2). Основными рабочими элементами этих устройств являются матерчатые рукава, подвешиваемые к встряхивающему устройству и размещаемые в герметичном металлическом корпусе. Нижние открытые концы рукавов соединены с бункером. Воздух, проходя через ткань рукавов, оставляет на их поверхности пыль и удаляется из корпуса фильтра вентилятором. Накапливаясь на поверхности ткани в виде слоя, пыль сама становится фильтрующей средой и увеличивает эффективность пылезадержания фильтра. Очистка ткани рукавов от осевшей пыли производится путем их встряхивания, для чего устанавливается автоматически действующий встряхивающий меха низм. Во многих типах фильтров встряхивание рукавов сочетается с обратной их продувкой с целью лучшей очистки от пыли. Фильтры выполняются многосекционными. При отключении одной из секций для очистки рукавов остальные продолжают работать. Фильтры бывают всасывающего и напорного типов.

Рис. 7.2. Схема рукавного фильтра:

1 - входной патрубок; 2- рукав; 3- подвеска рукавов; 4- встряхивающий механизм;

5- выходной патрубок; 6 - бункер

Эффективность пылезадержания рукавных фильтров составляет 90...99 %. Воздушная нагрузка на ткань принимается в пределах 50...80 м 3 /(м 2 ·ч). Гидравлическое сопротивление фильтра в зависимости от степени запыления рукавов колеблется в пределах 1...2.5 кПа.

В последние годы разработаны фильтры, в которых рукава выполнены из стеклоткани или пористых керамических материалов. Очистка фильтрующих элементов в них производится сжатым воздухом. Такие фильтры можно применять для очистки высокотемпературных газов, отсасываемых от технологического оборудования. Из выпускаемых промышленностью рукавных фильтров наибольшее распространение получили фильтры типов ФВК, ФВВ, ФРМ, ФТНС и др.

Электрические фильтры (рис. 7.3) находят широкое применение на предприятиях строительной индустрии для очистки воздуха и промышленных газов от пыли. В этих аппаратах отделение пылевых частиц от воздуха производится под воздействием статического электрического поля высокой напряженности. В металлическом корпусе, стенки которых заземлены и являются осадительными электродами, размещены коронирующие электроды, соединенные с источником постоянного тока. Напряжение выпрямленного тока составляет 30...100 кВ.

Вокруг отрицательно заряженных электродов образуется электрическое поле. Проходящий через электрофильтр запыленный газ ионизируется, вследствие чего приобретают отрицательные заряды и пылевые частицы. Последние начинают перемещаться к стенкам фильтра, и, оседая на них, образуют плотный слой. Очистка осадительных электродов производится путем их остукивания или вибрации, а иногда путем смыва водой.

Рис. 7.3. Схема электрофильтра:

1 - входной патрубок; 2- корпус электрофильтра (осадительный электрод); 3-коронирующий электрод;

4- изоляторы; 5- выходной патрубок; 6- высоковольтный выпрямитель тока; 7- бункер

Эффективность пылеулавливания электрофильтров высокая, она достигает 99,9 %. Причем улавливаются частицы любых размеров, включая субмикронные при их высоких концентрациях в газах, достигающих 50 г/м 3 . Преимуществами этих аппаратов являются низкое гидравлическое сопротивление 100...150 Па, экономичность эксплуатации, возможность очищать газы при их высоких температурах (до450°С).

Для различных условий применения промышленностью выпускаются разные типы электрофильтров: УГ, ЭГА, УТТ, ОГП, УБ, УВВ, ПГ, ДМ и др.

Пылеуловители мокрого типа являются аппаратами глубокой очистки и отличаются высокой эффективностью пылеулавливания. Их применение целесообразно в том случае, когда улавливаемая пыль хорошо смачивается водой, не цементируется и не образует твердых, трудно разрушаемых отложений.

Из этого класса аппаратов наиболее часто применяют циклон с водяной пленкой ЛИОТ (рис. 7.4). Он имеет вертикальный цилиндрический корпус, в нижнюю часть которого тангенциально подводится очищаемый воздух. Последний закручивается и, вращаясь, поднимается в верхнюю часть аппарата, откуда отводится в атмосферу через выхлопной патрубок.

Рис. 7.4. Циклон с водяной пленкой:

1 - входной патрубок; 2 - корпус; 3 - выходной патрубок; 4 - устройство для подачи воды

При вращении потока из него под действием центробежных сил выделяются пылевые частицы, которые удаляются со стенок аппарата стекающей сверху водой. Последняя подается на стенки аппарата через водоподающее кольцо и несколько тангенциально расположенных трубок и стекает по стенкам аппарата в виде сплошной водяной пленки. Образующийся шлам собирается в бункере.

Эффективность пылеулавливания циклонов с водяной пленкой составляет 99,0...99,5 %, потери давления в аппарате равны 400...800 Па. При очистке от пыли агрессивных газов, разрушающих металлические стенки аппарата, последние с внутренней стороны армируются кислотостойкими покрытиями.

Высокими эксплуатационными показателями отличаются также пенные пылеуловители (рис. 7.5). Аппараты этого типа имеют цилиндрический металлический корпус, внутри которого горизонтально размещена решетка. Вода подается на решетку, через которую снизу пропускается очищаемый воздух. При этом на решетке образуется слой пены, высота которого зависит от высоты сливной перегородки (порога). Обычно она составляет 80... 100 мм. С целью снижения капельного уноса влаги в верхней части аппарата размещается каплеуловитель, выполненный в виде решетки с лабиринтными каналами.

Рис. 7.5. Пенный пылеуловитель:

1 - приемная коробка; 2- корпус; 3- решетка; 4- сливная перегородка (порог); 5-сливная коробка

1. Назовите основные источники и свойства пылей, выделяющихся на строительных площадках. 2. Каковы методы контроля запыленности воздуха? 3. Перечислите общие и индивидуальные средства защиты работающих от пыли. 4. Назовите основные виды пылеуловителей и фильтров, применяемых для очистки воздуха. 5. Каковы технико-экономические показатели, применяемые при оценке пылеуловителей и фильтров? 6. Объясните принцип действия и укажите области применения пылеосадительных камер и циклонов. 7. Как устроены и работают рукавные фильтры? 8. Объясните принцип действия электрических фильтров. 9. Как устроены пылеуловители мокрого типа и в каких случаях они применяются? 10. Объясните принцип действия пенных пылеуловителей.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-12

Для многих из нас компьютер стал тем местом, у которого мы проводим значительное время: на работе и дома. Как и любой технике, компьютеру время от времени требуется капитальная уборка. Посмотрите на монитор, на нем обязательно найдутся следы от пальцев, грязные разводы или пыль, на клавиатуре - жирные пятна, под клавишами - крошки, волоски, следы от пролитого когда-то кофе; мышка почему-то отказывается, как прежде, легко скользить по коврику, системный блок гудит, как падающий самолет. Может быть, стоит навести порядок?

О том, как правильно почистить свой компьютер от накопившейся сверху грязи и пыли я уже писала:

Сегодня мы поговорим о том, как правильно почистить системный блок.

Чистка “системника”, наверное, самое сложное и ответственное мероприятие. Если вы никогда не разбирали системный блок, то лучше ничего не трогайте от греха подальше или делайте уборку вместе со знакомым специалистом.

Если внутри системного блока накопилось много пыли, то “кулеры” (вентиляторы) становятся более шумными, а компьютер из-за плохого охлаждения во время выполнения сложных задач, может зависать.

Внимание!
1 Перед чисткой обязательно отключите компьютер от сети!
2 Обязательно снимите с себя статическое напряжение. Сделать это можно дотронувшись рукой до неокрашенного места на батарее отопления или водопровода.
3 Не желательно находиться в синтетической или другой одежде, создающей статику. Даже самое минимальное напряжение может вывести микросхемы из строя. И не надейтесь, что вы случайно не дотронетесь до таких то деталей.

Это обязательные процедуры во всех случаях, когда вам приходится оперировать с начинкой компьютера.

Снаружи почистить не составит труда, только обходитесь без обилия воды, слегка увлажненная тряпочка или чистящая салфетка вам в помощь.

Рассмотрим, как почистить компьютер изнутри

по порядку. При этом будем исходить из того, что все компоненты системного блока исправны и вентиляция внутри него сделана достаточно грамотно.

Если мы говорим о домашнем обслуживании техники, значит, имеем в виду, что у нас нет специальных средств. Так вот для работы нам понадобятся:

Крестовая отвертка (для снятия боковой стенки блока)

Малярная кисточка с длиной ворса не меньше 40мм

Полиэтиленовая клеенка (под системный блок)

Пылесос

Вначале необходимо полностью отключить все составные части вашего ПК (системный блок, монитор, принтер) от электрической сети, причем обязательно вынуть вилку шнура питания из розетки. Если у вас есть источник бесперебойного питания необходимо отключить шнуры, идущие с его выходов на вышеуказанные устройства.

Аккуратно, не допуская ударных воздействий, располагаем системный блок левой боковой стенкой к себе и стелим под него клеенку. Все вентиляционные отверстия чистим пылесосом с надетой длинноворсовой щеткой.

Теперь нужно избавиться от статического электричества (статический заряд на вашем теле может сжечь какие-нибудь чувствительные детали) - подержитесь за батарею отопления, чтобы ваш потенциал сравнялся с “землей”. Не стоит думать, что если компьютер выключен, то он полностью обесточен - в современных компьютерах с корпусами ATX, на материнской плате всегда присутствует дежурное напряжение. Проверьте еще раз, выключен ли компьютер из розетки. Выключен? Тогда отсоединяйте все провода и кабели, откручивайте болты на задней стороне системного блока и снимайте боковые крышки.

С помощью отвертки снимаем боковую стенку корпуса . Откручиваем фигурной отверткой два винтика с торца крышки и открываем чуть потянув ее назад относительно корпуса. Возможны другие варианты с защелками, зависит от производителя корпусов.

Осматриваем фронт предстоящих работ. За счёт вентиляторов в компьютере постоянно циркулирует воздух, пыль из которого остаётся внутри корпуса. Больше всего её будет, конечно, на дне системного блока.
Так как пыль со временем металлизируется из-за трущихся частей вентиляторов (щетки и коллектор), её скапливание может привести к короткому замыканию внутри блока питания, повреждению модулей памяти и т.п.

Уфф! Ну и пылища!

Да тут есть над чем поработать!
Возможно у Вас и не будет столько пыли. Этот компьютер не чистили около двух лет, вот вам и результат. Обратите внимание на кучу, которая лежит на видеокарте, из такого количества пыли можно носки связать или варежки:о)

Производим осмотр материнской платы и установленных на ней компонентов на предмет наличия пыли, шерсти, пуха и других посторонних предметов, ухудшающих тепловой режим компонентов системного блока.

Особое внимание обращаем на радиаторы и установленные вентиляторы (центральный процессор, микросхемы мостов, видеокарта, накопитель на жестких дисках).

Вооружитесь баллоном с сжатым воздухом (продается в компьютерных магазинах, другое название — пневматический очиститель) и кистью. И вперёд:



В крайнем случае подойдёт обычный домашний пылесос (в этом случае нужно убрать металлические трубки его ручки и установить плоскую (щелевую) насадку прямо на гибкий шланг), но его эффективность мала (особенно под кулером на процессоре), и появляется возможность случайно повредить компоненты.
Многие спорят, как правильно удалять пыль, на “вдохе” или на “выдохе”. Принципиальной разницы нет, но если вы не хотите гонять пыль по дому, ставьте на “вдох”. В интернете часто рекомендуют пыль из системного блока именно выдувать, но в таком случае Вы за каких-то пять минут вдохнете в свои легкие годовой запас пыли.
Включаем пылесос на средний уровень мощности.

Сразу же пылесосим решетку вениляции и блока питания.

Берем малярную кисть (ширина её щетины должна составлять примерно 0,5-0,7 см.) и аккуратно, не прилагая чрезмерных усилий, плавными движениями снимаем обнаруженные самые крупные клочки пыли и другой мусор, тут же орудуя пылесосом, дабы не допустить разлёта пыли. То есть кисточка и пылесос у вас работают синхронно.
Не забудьте обесточить и отсоединить провода от задней части корпуса системного блока!
Процесс начинаем с верхней части системного блока, продвигаясь по мере очистки вниз, а в недоступных местах можно продуть воздухом.
Убираем пыль со всех горизонтальных участков - дно корпуса, поверхность оптических приводов и жёстких дисков, видеокарты и прочих плат расширения. Действуя кисточкой, как мини-веником, просто сметаем пыль в жерло пылесосного шланга.
Затем аккуратно, чтобы не сломать, освобождаете все слоты и пылесосите все самые удаленные участки.

По возможности избегая рассоединения проводов и прямого физического контакта насадки с платами, пропылесосьте внутренности системного блока , уделяя особое внимание уголкам и щелям, а также ближайшим окрестностям процессора.

Для удобства работы, можно, открутив винты и отсоединив шлейфы, снять оптический привод и жесткие диски.
Важно не напутать с обратным подключением этих устройств.
Устройства с интерфейсом IDE (где шлейф широкий и содержит 80 проводов) подключаются так. Держим устройство задней стороной к себе, не “вверх ногами”. Слева у нас будет широкий разьём для шлейфа, справа - разьём питания. Шлейф мы подключам так, чтобы крайний провод с маркировкой оказался справа, ближе к разьёму питания (зачастую перепутать нельзя, так как в шлейфе один контакт запаян, и, соответственно, нет пина в устройстве). Разьём питания подключается так, чтобы желтый провод (12 вольт) был справа, а красный - слева. Однако, разъем питания сделан так, что перепутать подключение довольно затруднительно.
Надо быть очень сильным физически человеком, чтобы перепутать разьёмы и шлейфы устройств с интерфейсом sata.
Попросту, постарайтесь запомнить, сфотографировать или зарисовать соединения, прежде чем начнёте их разъединять.

Приступаем к удалению накопившихся сгустков пыли с радиатора и кулера охлаждения процессора.

Когда будете пылесосить “кулеры”, рекомендуется или застопорить их вращение или отключить их от платы. Придерживая кулер одним пальцем от вращения пылесосим его. Поднесите насадку (а можно и трубку без насадки) прямо к вентилятору процессора, чтобы выдуть из него, а также из щелей радиатора всю пыль. Аккуратно покрутите крыльчатку вентилятора и убедитесь, что под ней не застряло комков пыли. Потом, просунув насадку между лопастями вентилятора, прочищаем сам радиатор. Не давайте кулеру сильно раскрутиться, он может выйти из строя.

Если вы с железом на ты, то лучше сделать так: аккуратно откручиваем вентилятор от радиатора.

Затем всё высасываем пылесосом. Вот такой слой не даёт потоку воздуха охлаждать радиатор, который в свою очередь охлаждает процессор.

Лопасти вентилятора тоже следует почистить.Сначала пылесосом, а затем при помощи чистящих салфеток пропитанных спиртовым раствором.

Если у вас также наблюдается шум, жужжание или своеобразный рёв при включении ПК или во время работы, то скорее всего это высохла смазка вентилятора - “кулер” нужно смазать . Аккуратно открутите его и, отклеив маленькую наклейку на основании, капните туда каплю машинного масла.
Когда требуемая чистота будет достигнута, собираете все назад. Ничего не перепутайте! Собрали? Включайте. Если все включается, поздравляю, вы все сделали правильно!

Так же внимательно осматриваем состояние материнской платы , внутренностей корпуса, других поверхностей.

В таком беспорядке работать будет очень сложно

Для удобства снимаем с материнской платы периферийные устройства - видеокарту, модем, тв-тюнер (что у вас там ещё..).

  • Отсоединив все кабели питания внутри системного блока можно удалить блок питания (перед тем как отсоединять кабели запомните что куда подключается, или повесьте бирки чтобы потом не запутаться). Как правило он крепится всего несколькими винтами, так что с этим трудностей не будет.
  • Снимаем видеокарту. Для этого откручиваем крепежный винт на задней стенке системного блока (или отжав пластиковую защёлку), осторожно снимаем устройство, начиная от края материнской платы. Помните, что хвост видеокарты часто крепится также пластиковой защелкой, которую следует отжать. Не забудьте отключить провода от видеокарты, прежде чем будете её снимать.
  • Отсоединив интерфейсный кабель и кабель питания, откручиваем крепежные винты жесткого диска и снимаем его.

Эти устройства следует, выложив на чистую поверхность, также почистить кистью и пылесосом. Так как они располагаются монтажными элементами вниз, пыль оседает на обратной, верхней, стороне. Нижнюю сторону также нужно почистить.
Обращаем особое внимание на вентилятор и радиатор видеокарты. Тщательно вычищаем оттуда всю пыль. Если приставить шланг пылесоса близко к вентилятору, последний начнёт вращаться. Воспользуйтесь этим, чтобы, затормозив крыльчатку кистью или рукой, поднять всю засевшую пыль и устранить её пылесосом.
Аналогично можно чистить и остальные вентиляторы.

Видеокарта теперь выглядит как новенькая.

Кулер на жестком диске просто блестит:

Блок питания для чистки тоже желательно разобрать, пыли в нем собирается огромное количество.

Все, теперь смело можно устанавливать комплектующие на свои места (не забываем о замене термопасты, если снимали радиатор с процессора)

Если вы не уверены в том, что сможете собрать компьютер обратно, лучше не снимайте доп. устройства с материнской платы, то есть предыдущий шаг надо умудриться выполнить на компьютере в сборе. Однако, вследствие плотной укомплектованности компьютеров, это может оказаться затруднительным.

Пылесосим аккуратно, не дотрагиваясь до деталей насадкой, можете сковырнуть мельчайшие детали припаянные к плате. Можно просто подставить пальчик между насадкой и платой, делая маленкий зазор, поскольку вы разрядились, можете пальцами упираться в материнскую плату, тем самым придерживая насадку от касания деталей

Особое внимание при чистке материнсой платы следует уделять пространству вокруг процессора. Его выделяет большой радиатор с вентилятором (кулером). Если есть возможность, снимите вентилятор, не снимая радиатор с процессора (в противном случае можно нарушить слой термопасты, которая служит для лучшей передачи тепла от процессора на радиатор) как рассказывалось выше. Как следует, осторожно, кистью чистим пространство вокруг процессора, немедленно всасывая пылесосом пыль. Модули памяти можно осторожно снять, при условии, разумеется, что вы сможете правильно установить их обратно. Впрочем, можно и не делать этого, почистив установленные планки памяти.
Постепенно обрабатываем кистью всю материнскую плату, уделяя особое внимание радиаторам и вентиляторам, а также особо пыльным местам.

Возможно у вас имеется кулер и под передней панелью корпуса. Он забивается так же часто как и процессорный. Пылесоим его сначала снаружи, потом внутри.

Если вы не умеете снимать и монтировать железо, чистим видеокарту, не снимая. Поскольку на видеокартах кулер располагается внизу, подлезать к нему крайне не удобно. Хотя они особо и не забиваются пылью, но слегка почистить можно. Исключение составляет референсная система охлаждения, там для чистки потребуется немного разобрать видеокарту.

Не забываем про вентиляцию блока питания изнутри, там тоже есть чего почистить

Иногда внутренности системного блока облюбовывают бытовые насекомые. Их нужно изгонять при помощи того же пылесоса или других механических методов воздействия.

Внимание! Применение различных аэрозолей, жидкостей и порошков не допускается!

После окончания всех манипуляций с очисткой внутренностей системного блока той же кисточкой выметаем упавший мусор со дна корпуса на клеенку, либо удаляем пыль пылесосом.

Собираем компьютер.
Устанавливаем снятые модули памяти, периферийные устройства, вентиляторы, жесткие диски и оптические приводы.
Подключаем, проверяем правильность сборки. Затягиваем крепёжные винты.
Не спешите закрывать крышку.
Включите компьютер, чтобы убедиться, что всё работает и грузится, желательно с помощью биоса или прикладных программ проверить температуру ключевых элементов - процессора, жестких дисков, ядра видеокарты.
Если всё работает, ставим и закручиваем крышки. Всё.

Ставим боковую стенку корпуса на место. Восстанавливаем все коммутации, подключение к розетке электросети осуществляем в последнюю очередь.

Процедуру чистки желательно проводить каждые три месяца, а если системный блок стоит на полу, то и раз в два месяца.
Пыль в вентиляторе приводит к его порче и перегреву процессора. Поэтому уборка — не дань эстетике, а жизненная необходимость.
И, конечно, следите за пылью в комнате, где расположен компьютер. Регулярно делайте влажную уборку, при возможности приобретите увлажнитель воздуха (кстати, существуют специальные USB-увлажнители, предназначенные для людей, много времени проводящих за компьютером) - это скажется позитивно не только на компьютере, но и на вашем здоровье.

Это основной уход за компьютером , но есть еще кое что... дело в том, что для хорошего отвода тепла от микросхем и процессоров используется специальная термопаста. Рекомендуется менять ее один раз в году, поскольку термопаста постепенно теряет свои свойства. Теряется эластичность, соответственно плотность прилегания к деталям и в результате качество отвода тепла.

Лучше всего доверять замену термопасты на процессоре и видеокарте специалистам сервисного центра.

По материалам winblogs.ru, akak.ru

А вот как быстренько почистить внутренности компьютера при помощи фена :